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Patch dynamics bridges multiple scales in prob-
lems to provide new tools for scientists and en-
gineers to predict the macroscale dynamics of
the long time and space scale dynamics using
only microscopic simulations over small patches.
First developed by Yannis Kevrekidis and his
collaborators [1,2], patch dynamics is an effi-
cient approach for bridging these scales. Essen-
tially, hybrid-patch dynamics uses locally aver-
aged properties of short spacetime scales to ad-
vance and predict long spacetime scale dynamics.

Most continuum models of reaction and trans-
port processes are derived as conservation laws
(mass, species, momentum, and energy) whose
average properties are described by partial differ-
ential equations (PDEs). However, for a grow-
ing class of simulations, including crack propa-
gation, molecular dynamics, Boltzmann kinetic
theory models, and modeling the membrane of a
living cell where the microscale models are not
based on PDEs, but on other physically motivated
models. The mechanical properties of deform-
ing materials, such as modeling a materials stress
and hardening or predicting defect dynamics as
a function of load, often hinge on microscopic
transitions that macroscopic-averaged PDE mod-
els don’t accurately account for.

If we need to predict a systems behavior for
macroscopic spacetime scales when only the mi-
croscopic model is available, the computational
cost can be prohibitive, and will be for the fore-
seeable future. In situations in which we know a
physical processs microscopic description, patch
dynamics can help us compute the microscale
dynamics on a grid of small patches, which in
turn can help us predict the macroscale behav-
ior. Patch dynamics circumvents the need for
a closed-form macroscopic description of the
system and bypasses the need to explicitly de-
fine macroscopic equations, but it still delivers

macroscopic-level information.
There are physical systems where the

macroscale equations are unavailable because
the microscale dynamics (such as propagation at
the tip of a crack) is a highly nonlinear function
of small-scale physics, and continuum models
can’t capture this singular behavior. In other
physical models, the macroscopic equations for
average quantities such as mass, momentum,
or energy are known, but the equations for the
higher moments of the variables distribution on
the microscale are needed, but are not known.
Patch dynamics can predict system behavior of
these higher moments for long spacetime scales
without explicit evolution equations such as
PDEs.

Figure 1. One-dimensional physical system. The
microscale variable u(x) varies rapidly, but the
macroscopic variables U = (〈u〉,〈ux〉,〈uxx〉, and
so on) vary slowly. The boundary conditions
for the patches are defined by extending the mi-
croscale solution into a buffer region surrounding
each patch. The patches communicate with each
other via boundary conditions similar to the way
finite difference approximations of partial differ-
ential equations communicate to the surrounding
grid points.

Finite difference and finite element methods
are standard indispensable algorithms for solv-
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Figure 2. Space-time plot for the patches in Fig-
ure 1. The microscale solution is advanced in
small space-time patches until accurate approx-
imations of the time derivatives of the macroscale
variables U can be obtained over the space-time
patch. These time derivatives are used to advance
the macroscale variables a macroscale time step,
and the process repeats.

ing PDEs in science and engineering. The tools
and analysis in applying these methods have a lot
in common with patch dynamics. In patch dy-
namics, as well as in finite difference and element
methods, we first define a mesh to cover the do-
main of interest. Next, we define the macroscale
solution U at the grid points and approximate the
PDEs with finite differences to define the time
derivative Ut at the grid points.

The finite difference method is an ingenious
technique that uses a PDE to combine the neigh-
boring values of the solution on a grid to de-
fine a time derivative for the solution at the grid
points. These time derivatives advance the so-
lution in time by using a numerical integration
method, such as a Runge-Kutta method. We de-
termine the approach’s accuracy by how well the
mesh resolves the underlying solution, how ac-
curately the PDEs finite difference approximation
defines Ut , and how accurately the numerical in-
tegration method advances the solution in time.

As in a finite difference method, the first step
in patch dynamics is to define an appropriate grid
that resolves the macroscale structure as in Fig-
ure 1. In finite difference methods, we solve for
the value of the averaged microscale at each of the
grid points. In patch dynamics, the grid points are
stretched into the small patches (regions) where
the microscopic model will be solved. Next,
we generate microscopic initial conditions in the
patch to agree with the macroscale averages at the
grid points. The global macroscopic solution is
defined by interpolating the macroscale averages
at the grid points. This interpolant defines the mi-
croscale boundary conditions at the edges of the
patches and provides communication across the
spatial gaps between the patches. The microscale
solution is then advanced a short time in each
patch using the microscopic model, as shown in
Figure 2. The integration of microscopic model
creates changes in the macroscale averages over
the patch. These changes define the time deriva-
tives of averaged quantities and their moments.
As in the PDE case, these time derivatives are
used to advance the macroscopic variables in time
via a numerical integration method.
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